Магнитное поле. Силы

В отличие от электрического поля, которое действует на любой заряд, магнитное поле действует только на движущиеся заряженные частицы. При этом оказывается, что сила зависит не только от величины, но и от направления скорости заряда.

Сила Лоренца

Сила, с которой магнитное поле действует на заряженную частицу, называется силой Лоренца. Опыт показывает, что вектор \vec{F} силы Лоренца находится следующим образом.

1. Абсолютная величина силы Лоренца равна:

F = qvB \sin \alpha. (1)

Здесь q — абсолютная величина заряда, v — скорость заряда, B — индукция магнитного поля, \alpha  — угол между векторами \vec{v} и \vec{B}.

2. Сила Лоренца перпендикулярна обоим векторам \vec{v} и \vec{B}. Иными словами, вектор \vec{F} перпендикулярен плоскости, в которой лежат векторы скорости заряда и индукции магнитного поля.

Остаётся выяснить, в какое полупространство относительно данной плоскости направлена сила Лоренца.

3. Взаимное расположение векторов \vec{v}\vec{B} и \vec{F} для положительного заряда q показано на рис. 1.

Рис. 1. Сила Лоренца

Направление силы Лоренца определяется в данном случае по одному из двух альтернативных правил.

Правило часовой стрелкиСила Лоренца направлена туда, глядя откуда кратчайший поворот вектора скорости частицы v к вектору магнитной индукции B виден против часовой стрелки.

Правило левой руки Располагаем левую руку так, чтобы четыре пальца указывали направление скорости частицы, а линии поля входили в ладонь. Тогда оттопыренный большой палец укажет направление силы Лоренца.
Для отрицательного заряда q направление силы Лоренца меняется на противоположное.

Всё вышеперечисленное является обобщением опытных фактов. Формула (1) позволяет связать размерность индукции магнитного поля с размерностями других физических величин:

B=\frac{\displaystyle F}{\displaystyle qv \sin \alpha \vphantom{1^a}}

Сила Ампера

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Происхождение силы Ампера легко понять. Ведь ток в металле является направленным движением электронов, а на каждый электрон действует сила Лоренца. Все эти силы Лоренца, действующие на свободные электроны, имеют одинаковое направление и одинаковую величину; они складываются друг с другом и дают результирующую силу Ампера.

Направление силы Ампера определяется по тем же двум правилам, сформулированным выше.

Правило часовой стрелки Сила Ампера направлена туда, глядя откуда кратчайший поворот тока к полю виден против часовой стрелки .

Правило левой руки Располагаем левую руку так, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда оттопыренный большой палец укажет направление силы Ампера .

Взаимное расположение тока, поля и силы Ампера \vec{F} указано на рис. 2.

Рис. 2. Сила Ампера

На этом рисунке проводник имеет длину l, а угол между направлениями тока и поля равен \alpha . Мы сейчас выведем выражение для абсолютной величины силы Ампера.

На каждый свободный электрон действует сила Лоренца:

F_1 = evB \sin \alpha

где v — скорость направленного движения свободных электронов в проводнике.

Пусть N — число свободных электронов в данном проводнике, n — их концентрация (число в единице объёма). Тогда:

N = nV = nSl,

где V — объём проводника, S — площадь его поперечного сечения. Получаем:

F = NF_1 = nSl \cdot evB \sin \alpha  = (enSv)Bl \sin \alpha.

Мы не случайно выделили скобками четыре сомножителя. Ведь это есть не что иное, как сила тока: I = enSv (вспомните выражение силы тока через скорость направленного движения свободных зарядов!). В результате приходим к окончательной формуле для силы Ампера:

F = IBl \sin \alpha. (2)

Хорошую возможность поупражняться в нахождении направлений магнитного поля и силы Ампера даёт взаимодействие параллельных токов. Оказывается, два параллельных провода отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают (рис. 3).

Рис. 3. Взаимодействие параллельных токов

Обязательно убедитесь в этом самостоятельно! Делаем так. Сначала берём произвольную точку на первом проводе и определяем направление магнитного поля, создаваемого в этой точке вторым проводом (правило вам известно — см. предыдущий листок>). Ну а затем находим направление силы Ампера, действующей на первый провод со стороны магнитного поля второго провода.

Рамка с током в магнитном поле

В листках по термодинамике мы говорили о важности циклически работающих машин: они снабжают нас энергией. Понимание законов термодинамики позволило сконструировать тепловые двигатели, которые исправно служат нам и по сей день.

Понимание же законов электромагнетизма дало возможность создать циклическую машину другого типа — электродвигатель.

Мы рассмотрим один из элементов электродвигателя — рамку с током в магнитном поле. Разобравшись в её поведении, мы сможем уловить основную идею функционирования электродвигателя.

Пусть прямоугольная рамка 1234 может вращаться вокруг горизонтальной оси (рис. 4, слева). Рамка находится в вертикальном однородном магнитном поле \vec{B}. Ток течёт по рамке в направлении 1 > 2 > 3 > 4 > 1″>; это направление показано соответствующими стрелками.</p>



<figure class=

Рис. 4. Рамка с током в магнитном поле

Вектор \vec{n} называется вектором нормали; он перпендикулярен плоскости рамки и направлен туда, глядя откуда ток кажется циркулирующим против часовой стрелки. (Иными словами, вектор \vec{n} сонаправлен с вектором индукции магнитного поля, которое создаётся током в рамке.) Поворот рамки измеряется углом \alpha  между векторами \vec{n} и \vec{B}.

Теперь определим направления сил Ампера, которые действуют на рамку со стороны магнитного поля. Эти силы расставлены на рисунке; вот вам ещё одно упражнение на правило часовой стрелки (левой руки) — обязательно проверьте правильность указанных направлений!

Силы \vec{F_{12}} и \vec{F_{34}}, приложенные к сторонам 12 и 34, действуют вдоль оси вращения. Они лишь растягивают рамку и не вызывают её вращение.

Куда более интересны силы \vec{F_{23}} и \vec{F_{14}}, приложеные соответственно к сторонам 23 и 14. Они лежат в горизонтальной плоскости и перпендикулярны оси вращения. Эти силы вращают рамку в направлении по часовой стрелке, если смотреть справа (рис. 4, правая часть). Вычислим момент этой пары сил относительно оси O вращения рамки.

Пусть длина стороны 14 равна a. Тогда

F_{14} = F_{23} = IB_a.

Пусть длина стороны 12 равна b. Плечо d силы F_{14}, как видно из рис. 4 (справа) равно:

d=OA=\frac{\displaystyle b}{\displaystyle 2 \vphantom{1^a}} \sin \varphi

Таким же будет плечо силы \vec{F_{23}}. Отсюда получаем момент сил, вращающий рамку:

M=F_{14}d + F_{23}d=IB_a \cdot \frac{\displaystyle b}{\displaystyle 2 \vphantom{1^a}} \sin \varphi + IB_a \cdot \frac{\displaystyle b}{\displaystyle 2 \vphantom{1^a}} \sin \varphi=IBab  \sin \varphi

Теперь заметим, что ab=S — площадь рамки. Окончательно имеем:

M = IBS \sin \varphi. (3)

В этой формуле площадь служит единственной геометрической характеристикой рамки.Это наводит на мысль, что только площадь рамки и существенна в выражении для вращающего момента. И действительно, можно доказать (разбивая рамку на бесконечно узкие полоски, неотличимые от прямоугольников), что формула (3) справедлива для рамки любой формы с площадью S.

Как видно из формулы (3), максимальный вращающий момент равен:

M_{max} = IBS.

Эта максимальная величина момента достигается при \varphi = \frac{\displaystyle \pi}{\displaystyle 2 \vphantom{1^a}}, то есть когда плоскость рамки параллельна магнитному полю.

Вращающий момент становится равным нулю при \varphi = 0 и \varphi = \pi. Оба этих положения по-своему интересны.

При \varphi = \pi плоскость рамки перпендикулярна полю, а векторы n и B направлены в разные стороны. Данное положение является положением неустойчивого равновенсия: стоит хоть немного шевельнуть рамку, как силы Ампера начнут её вращать в том же направлении, поворачивая вектор \vec{n} к вектору \vec{B} (убедитесь!).

При \varphi = 0 плоскость рамки также перпендикулярна полю, а векторы \vec{n} и \vec{B} сонаправлены. Это — положение устойчивого равновенсия: при отклонении рамки возникает вращающий момент, стремящийся вернуть рамку назад (убедитесь!). Начнутся колебания рамки, постепенно затухающие из-за трения. В конце концов рамка остановится в положении \varphi = 0; в этом положении вектор индукции магнитного поля рамки сонаправлен с вектором \vec{B} индукции внешнего магнитного поля (вот почему при намагничивании вещества элементарные токи ориентируются так, что их поля направлены в сторону внешнего магнитного поля). Полезное сопоставление: рамка занимает такое положение, что её положительная нормаль ориентируется в том же направлении, что и северный конец стрелки компаса, помещённой в это магнитное поле.

Таким образом, поведение рамки в магнитном поле становится ясным: если отклонить рамку от положения устойчивого равновесия и отпустить, то рамка будет совершать колебания. С точки зрения совершения механической работы это не очень хорошо: если намотать нить на ось вращения и подвесить к нити груз, то груз будет то подниматься, то опускаться.
Но вот если исхитриться и заставить ток менять направление в нужные моменты, то вместо колебаний рамки начнётся её непрерывное вращение и, соответственно, непрерывный подъём подвешенного груза. Тогда-то и получится полноценный электродвигатель; идея с переменой направления тока реализуется с помощью коллектора и щёток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *